End of Course Review
NUMBER SENSE, QUADRATIC FUNCTIONS AND OPERATION SKILLS

Warm Up - What do you remember?

1. What are the zeroes of the quadratic function $f(x)=x^{2}+$ $3 x+1$?
2. Sketch the solution set to $x^{2}-6 x+7 \leq 2 x-5$.
3. For the equation $x^{2}-4 x+4=9$, determine the number and types of roots.
4. Given the equation: $(x-2)^{2}+(y-4)^{2}=25$ name the center and radius of the circle.
5. Given the equation: $(x-2)^{2}+(y-4)^{2}=25$ sketch a graph of the circle.

Graph and Solve Quadratic Equations and Inequalities

- Solving Quadratics Equations and Inequalities:
- When solving quadratic equations and inequalities, always make sure the equation is set equal to 0 .
- Factor the equation if possible. Factoring is looking for what multiplies to get the original problem.
- Example: $x^{2}+9 x+18=0$

$$
\begin{array}{ll}
(x+6)(x+3)=0 & \text { and c; look for factor } \\
x+6=0 \quad x+3=0 & \text { that add to } b . \\
x=-6 ; x=-3 \text { (Called roots, zeros, } & \text { solutions, } x \text {-intercepts) }
\end{array}
$$

- If quadratic equation cannot be factored, use quadratic formula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Equation must be in standard form and set equal to 0 .

$$
\left(a x^{2}+b x+c=0\right)
$$

1. What are the zeroes of the quadratic function $f(x)=x^{2}+3 x+1$?

Graph and Solve Quadratic Equations and Inequalities

- Remember when solving quadratics:
- If there is a negative number under the radical you have complex roots
- Complex (Imaginary) Roots come in Pairs!!!
- Will have the same real number, opposite sign on the complex (imaginary) piece

Graph and Solve Quadratic Equations and Inequalities

- Quadratics Inequalities:
- Can also be solved by graphing the inequality on a coordinate plane.
- Example: Graph $y<-2 x^{2}+4$.
- Change the inequality to an equality: $y=-2 x^{2}+4$.
- Graph the equation (find vertex $x=-b / 2 a$, then find y by substituting x into equation)
- $y<-2 x^{2}+4$
- < or \leq shade below
- > or \geq shade above

2. Sketch is the solution set to $x^{2}-6 x+7 \leq 2 x-5$?

Graph and solve systems of quadratic inequalities

- When solving a system of quadratic inequalities, graph both quadratic functions and look for the areas of intersection
- Example: What is the solution to the system of inequalities:

$$
\begin{aligned}
& y \geq x^{2}-3 x-4 \\
& y<-x^{2}-6 x+8
\end{aligned}
$$

Determine number and type of roots for a quadratic equation

- To do this, use the discriminant of the quadratic formula:

Discriminant $D=b^{2}-4 a c$

Discriminant	Roots
D <0	No real roots (only complex roots)
D $=0$	One real roots
D >0	Two real roots

3. For the equation $x^{2}-4 x+4=9$, determine the number and types of roots.

Determine the Domain and Range of a Quadratic Function

- The domain of a quadratic function is all the x values that lie on the function in the graph from the lowest x value to the highest x value.
- The range is all of the y values that lie on the function in the graph from the lowest y value to the highest y value.
- Examples:

$$
\text { 1) } y=x^{2}-4 x+2
$$

2) $y=-x^{2}-4 x-2$

Domain: all x values Range: $\mathrm{y} \leq 2$

Identify, graph, determine the characteristics of, and write equations of circles and parabolas

- Writing equations of Parabolas:
- To write an equation of a parabola given the vertex and a point on the vertex you will:
- Use vertex form of a quadratic equation: $y=a(x-h)^{2}+k$, and substitute the vertex into the equation for (h, k).
- Using the point given, substitute the x and y values into the equation for x and y and solve for a.
- Rewrite the vertex form of the equation using the newly calculated a value. Simplify to get standard form if necessary.

Example:

Write the equation of the parabola with its vertex at $(15,8)$ and point on the graph $(7,-8)$

$$
\begin{gathered}
y=a(x-15)^{2}+8 \\
-8=a(7-15)^{2}+8 \\
-8=64 a+8 \\
-16=64 a \\
\quad-\frac{1}{4}=a \\
y=-\frac{1}{4}(x-15)^{2}+8
\end{gathered}
$$

Identify, graph, determine the characteristics of,

 and write equations of circles and parabolas- The standard form of an equation of a circle is:

$$
(x-h)^{2}+(y-k)^{2}=r^{2}
$$

- Where (h, k) is the center of the circle (both are liars!!!)
$\Rightarrow r$ is the radius
- Example:

Find the equation of the circle with the center at
$(-1,4)$ and a radius of 15 .

$$
(x+1)^{2}+(y-4)^{2}=225
$$

4. Given the equation: $(x-2)^{2}+(y-4)=25$ name the center and radius of the circle.

Identify, graph, determine the characteristics of, and write equations of circles and parabolas

- Graphing Circles:
- From the equation, find the center (h,k) and then the radius (r).
- Plot the center point on a coordinate plane
- Using the radius, find 4 points on the circle, then sketch the graph.
- Example:

The equation of a circle is $(x-2)^{2}+(y-7)^{2}=49$. Graph the circle.

5. Given the equation: $(x-2)^{2}+(y-4)=25$ sketch a graph of the circle.

