End of Course Review

NUMBER SENSE, QUADRATIC FUNCTIONS AND OPERATION SKILLS

Warm Up – What do you remember?

- 1. What are the zeroes of the quadratic function $f(x) = x^2 + 3x + 1$?
- 2. Sketch the solution set to $x^2 6x + 7 \le 2x 5$.
- 3. For the equation $x^2 4x + 4 = 9$, determine the number and types of roots.
- 4. Given the equation: $(x 2)^2 + (y 4)^2 = 25$ name the center and radius of the circle.
- 5. Given the equation: $(x 2)^2 + (y 4)^2 = 25$ sketch a graph of the circle.

Graph and Solve Quadratic Equations and Inequalities

Solving Quadratics Equations and Inequalities:

- When solving quadratic equations and inequalities, always make sure the equation is set equal to 0.
- Factor the equation if possible. Factoring is looking for what multiplies to get the original problem.

Example:
$$x^2 + 9x + 18 = 0$$
Remember: Multiply a $(x + 6)(x + 3) = 0$ and c; look for factors $x + 6 = 0$ $x + 3 = 0$

x = -6; x = -3 (Called roots, zeros, solutions, x-intercepts)

a·cb1·1891·18192·9113·69

▶ If quadratic equation cannot be factored, use quadratic formula

x =	$-b \pm \sqrt{b^2 - 4ac}$
	2a

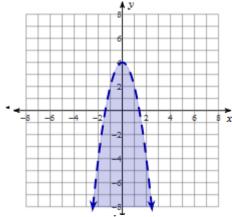
Equation must be in standard form and set equal to 0. $(ax^2 + bx + c = 0)$

1. What are the zeroes of the quadratic function $f(x) = x^2 + 3x + 1$?

Graph and Solve Quadratic Equations and Inequalities

Remember when solving quadratics:

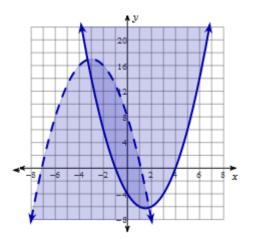
If there is a negative number under the radical you have complex roots


Complex (Imaginary) Roots come in Pairs!!!

Will have the same real number, opposite sign on the complex (imaginary) piece

Graph and Solve Quadratic Equations and Inequalities

- Quadratics Inequalities:
 - Can also be solved by graphing the inequality on a coordinate plane.
 - Example: Graph y< $-2x^2 + 4$.
 - ► Change the inequality to an equality: $y = -2x^2 + 4$.
 - Graph the equation (find vertex x = -b/2a, then find y by substituting x into equation)
 - ▶ y < -2x² + 4
 - \blacktriangleright < or \leq shade below
 - > or ≥ shade above


▶ 2. Sketch is the solution set to $x^2 - 6x + 7 \le 2x - 5$?

Graph and solve systems of quadratic inequalities

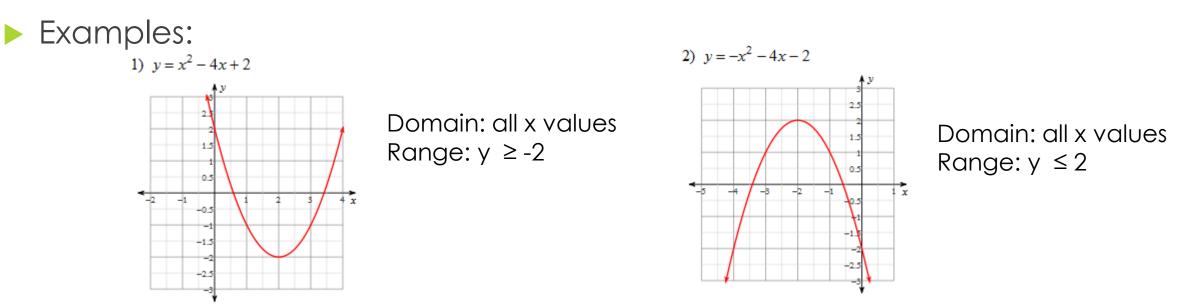
- When solving a system of quadratic inequalities, graph both quadratic functions and look for the areas of intersection
- Example: What is the solution to the system of inequalities:

$$y \ge x^2 - 3x - 4$$

 $y < -x^2 - 6x + 8$

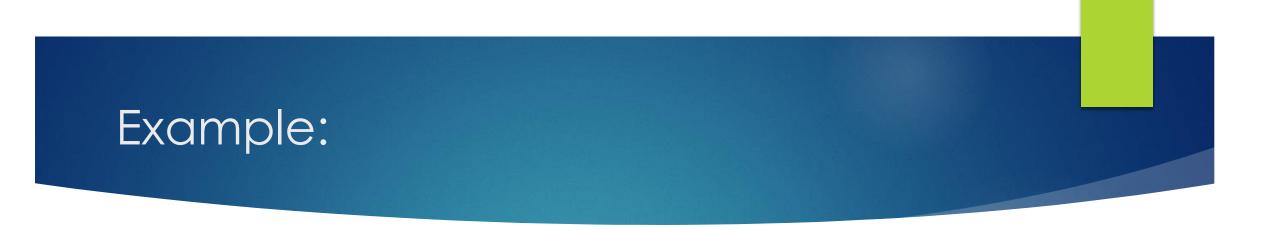
Determine number and type of roots for a quadratic equation

To do this, use the discriminant of the quadratic formula:


Discriminant D = $b^2 - 4ac$

Discriminant	Roots
D < 0	No real roots (only complex roots)
D = 0	One real roots
D > 0	Two real roots

3. For the equation $x^2 - 4x + 4 = 9$, determine the number and types of roots.


Determine the Domain and Range of a Quadratic Function

- The domain of a quadratic function is all the x values that lie on the function in the graph from the lowest x value to the highest x value.
- The range is all of the y values that lie on the function in the graph from the lowest y value to the highest y value.

Identify, graph, determine the characteristics of, and write equations of circles and parabolas

- Writing equations of Parabolas:
- > To write an equation of a parabola given the vertex and a point on the vertex you will:
- Use vertex form of a quadratic equation: $y = a(x h)^2 + k$, and substitute the vertex into the equation for (h, k).
- Using the point given, substitute the x and y values into the equation for x and y and solve for a.
- Rewrite the vertex form of the equation using the newly calculated a value. Simplify to get standard form if necessary.

Write the equation of the parabola with its vertex at (15, 8) and point on the graph (7,-8)

$$y = a(x - 15)^{2} + 8$$

-8 = a(7 - 15)^{2} + 8
-8 = 64a + 8
-16 = 64a
 $-\frac{1}{4} = a$
 $y = -\frac{1}{4}(x - 15)^{2} + 8$

Identify, graph, determine the characteristics of, and write equations of circles and parabolas

The standard form of an equation of a circle is:

$$(x - h)^2 + (y - k)^2 = r^2$$

Where (h, k) is the center of the circle (both are liars!!!)
r is the radius

Example:

Find the equation of the circle with the center at

(-1, 4) and a radius of 15.

$$(x+1)^2 + (y-4)^2 = 225$$

4. Given the equation: $(x - 2)^2 + (y - 4) = 25$ name the center and radius of the circle.

Identify, graph, determine the characteristics of, and write equations of circles and parabolas

- Graphing Circles:
- From the equation, find the center (h, k) and then the radius (r).
- Plot the center point on a coordinate plane
- Using the radius, find 4 points on the circle, then sketch the graph.

Example:

The equation of a circle is $(x - 2)^2 + (y - 7)^2 = 49$. Graph the circle.

5. Given the equation: $(x - 2)^2 + (y - 4) = 25$ sketch a graph of the circle.