Number Sense, Quadratics, Matrices Review Day 1

Name \qquad

Warm Up:

1. What are the zeroes of the quadratic function $f(x)=x^{2}+3 x+1$?
2. For the equation $x^{2}-4 x+4=9$, determine the number and types of roots.
3. Sketch the solution set to $x^{2}-6 x+7 \leq 2 x-5$?
4. Given the equation: $(x-2)^{2}+(y-4)^{2}=25$ name the center and radius of the circle.
5. Given the equation: $(x-2)^{2}+(y-4)^{2}=25$ sketch a graph of the circle.

Guide Notes:

Solve Quadratic Equations

When solving quadratic equations and inequalities, always make sure the equation is set \qquad .
\qquad the equation if possible. Factoring is looking for what \qquad to get the original problem.

Example: $\quad x^{2}+9 x+18=0$

Remember: Multiply a and c; look for factors that add to b.

If quadratic equation cannot be \qquad , use \qquad .

Quadratic Formula:

Equation must be in standard form and set equal to 0. $\left(a x^{2}+b x+c=0\right)$

You should now be able to do \#1 from warm up.
Remember when solving quadratics: If there is a \qquad number under the radical you have
\qquad
\qquad . Complex (Imaginary) Roots come in \qquad !!! They will have the
\qquad real number, \qquad sign on the complex (imaginary) piece.

Graphing Quadratic Inequalities

Can also be solved by graphing the inequality on a coordinate plane.
Example: \quad Graph $y<-2 x^{2}+4$.
Change the inequality to an equality: \qquad
Graph the equation (find vertex \qquad , then find y bysubstituting x into equation)
$y<-2 x^{2}+4$
$<$ or \leq shade \qquad
$>$ or \geq shade \qquad
You should be able to do \#2 from the warm up.

When solving a system of quadratic inequalities, \qquad both quadratic functions and look for the areas of \qquad
Example: What is the solution to the system of inequalities?
$y \geq x^{2}-3 x-4$
$y<-x^{2}-6 x+8$

Determining the Number and Type of Roots

To do this, use the \qquad of the quadratic formula: Discriminant:

Discriminant	Roots
$\mathrm{D}<0$	
$\mathrm{D}=0$	
$\mathrm{D}>0$	

You should now be able to do \#3 from warm up.

Domain and Range of Quadratic Functions

The \qquad of a quadratic function is all the \qquad that lie on the function in the graph from the \qquad x value to the \qquad x value.

The \qquad is all of the \qquad that lie on the function in the graph from the \qquad y value to the \qquad y value.

Examples:

1) $y=x^{2}-4 x+2$

2) $y=-x^{2}-4 x-2$

Domain: all x values Range: $\mathrm{y} \geq-2$

Domain: all x values Range: $\mathrm{y} \leq 2$

Writing Equations Quadratic Functions

Use \qquad of a quadratic equation: \qquad , and substitute the vertex into the equation for (h, k). Using the point given, substitute the x and y values into the equation for x and y and
\qquad for a. \qquad the vertex form of the equation using the newly calculated a value. Simplify to get standard form \qquad .

Example: Write the equation of the parabola with its vertex at $(15,8)$ and point on the graph $(7,-8)$

Circles

The standard form of an equation of a circle is:
Where (h, k) is the center of the circle (\qquad). r is the \qquad
Example: Find the equation of the circle with the center at

$$
(-1,4) \text { and a radius of 15. }(x+\ldots)^{2}+\left(y-\ldots _\right)^{2}=
$$

You should be able to do \#4 on your warm up now.
Graphing Circles:
From the equation, find the center \qquad and then the \qquad (r). Plot the \qquad point on a coordinate plane. Using the radius, find 4 points on the circle, then \qquad the graph.

Example: The equation of a circle is $(x-2)^{2}+(y-7)^{2}=49$. Graph the circle.

You should now be able to do \#5 on your warm up.

Practice Problems:

Solve the following qudratic equations:

1. $a^{2}=-10 a-21$
2. $6 x^{2}-3 x=30$

Name the type and number of roots for \#3 \& \#4:
3. $-2 n^{2}+8 n-14=-6 \quad$ 4. $9 x^{2}+8 x-1=-3$
5. Graph and name the domain and range
$y=x^{2}+8 x+12$

8. Solve the quadratic.
$x^{2}+7 x+15=3$

Sketch a graph of the inequality in 6 \& 7
6. $y<-2 x^{2}+4 x$
7. $y \geq x^{2}-2 x+3$

9. Sketch the solution to the systems of quadratic.
$y<2 x^{2}-2 x+3$
$y>-x^{2}-2 x+7$

For 11, state the center and radius. Sketch the graph.
11. $(x+4)^{2}+(y+1)^{2}=4$

Answers: 1) $a=-7$ and $a=-3 \quad 2) x=5 / 2, x=-2 \quad 3) 1$ real solution
4) 2 imaginary solutions
5) D: all x values $R: y \geq-4$

11) circle with a center at $(-4,-1)$ and a radius of 2

7)
\qquad
8) $x=-4, x=-3$

9.

