Number Sense, Quadratics, Matrices Review Day 1

Name___

Warm Up:

- 1. What are the zeroes of the quadratic function $f(x) = x^2 + 3x + 1$?
- 2. Sketch the solution set to $x^2 6x + 7 \le 2x 5$?

3. For the equation $x^2 - 4x + 4 = 9$, determine the number and types of roots.

4. Given the equation: $(x - 2)^2 + (y - 4)^2 = 25$ name the center and radius of the circle.

5. Given the equation: $(x - 2)^2 + (y - 4)^2 = 25$ sketch a graph of the circle.

Guide Notes:

Solve Quadratic Equations

When solving quadratic equations and inequalities, always make sure the equation is set ______.

______the equation if possible. Factoring is looking for what ______to get the original problem.

Example: $x^2 + 9x + 18 = 0$

Remember: Multiply a and c; look for factors that add to b.

If quadratic equation cannot be ______, use _____, use _____

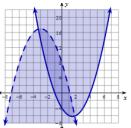
Quadratic Formula:

Equation must be in standard form and set equal to 0. $(ax^2 + bx + c = 0)$

You should now be able to do #1 from warm up.

Remember when solving quadratic	s: If there is a	_ number under the ra	idical you have
·	Complex (Imaginary) Roots cor	ne in	_!!! They will have the
real number,	sign on the complex	x (imaginary) piece.	

Graphing Quadratic Inequalities


Can also be solved by graphing the inequality on a coordinate plane.

Example: Graph $y < -2x^2 + 4$.	
Change the inequality to an equality:	
Graph the equation (find vertex	, then find y by substituting x into equation)
$y < -2x^2 + 4$	
< or ≤ shade	
$>$ or \geq shade	
You should be able to do #2 from the warm up.	
When solving a system of quadratic inequalities, areas of	both quadratic functions and look for the

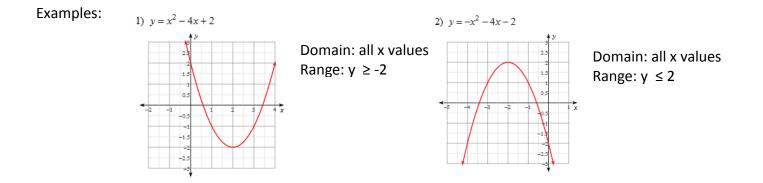
Example: What is the solution to the system of inequalities?

 $y \ge x^2 - 3x - 4$

 $y < -x^2 - 6x + 8$

Determining the Number and Type of Roots

To do this, use the ______ of the quadratic formula: Discriminant:


Discriminant	Roots
D < 0	
D = 0	
D > 0	

You should now be able to do #3 from warm up.

Domain and Range of Quadratic Functions

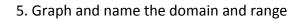
 The ______ of a quadratic function is all the ______ that lie on the function in the graph from the ______ x value to the ______ x value.

 The ______ is all of the ______ that lie on the function in the graph from the ______ y value to the ______ y value.

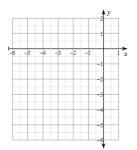
Writing Equations Quadratic Functions

Use	of a quadratic equation:	, and substitute the vertex into the
equation for (h, k).	Using the point given, substitute the	x and y values into the equation for x and y and
for a	the vertex form of the e	quation using the newly calculated a value. Simplify to
get standard form _		

Example: Write the equation of the parabola with its vertex at (15, 8) and point on the graph (7,-8)

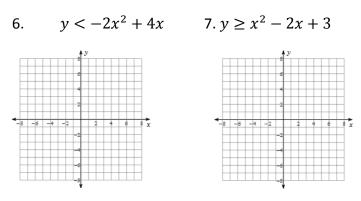

Circles

Practice Problems:


Solve the following qudratic equations:

Name the type and number of roots for #3 & #4:

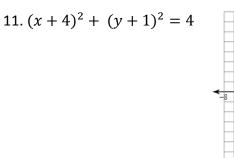
1. $a^2 = -10a - 21$ 2. $6x^2 - 3x = 30$ 3. $-2n^2 + 8n - 14 = -6$ 4. $9x^2 + 8x - 1 = -3$

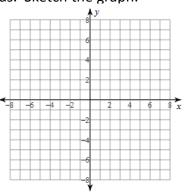

 $y = x^2 + 8x + 12$

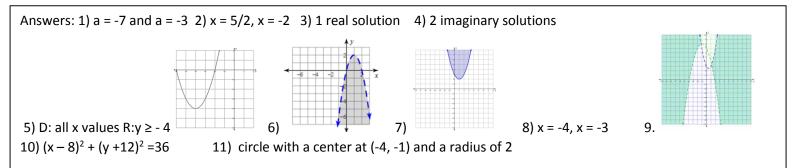
8. Solve the quadratic.

 $x^2 + 7x + 15 = 3$

Sketch a graph of the inequality in 6 & 7


9. Sketch the solution to the systems of quadratic.


 $y < 2x^2 - 2x + 3$ $y > -x^2 - 2x + 7$


Write the equation for the circles given in 10

For 11, state the center and radius. Sketch the graph.

10. Center (8, -12) Radius: 6

