Polynomial Equations and Functions

Warm Up: What do you remember?

1. Factor: $12 r^{3}-9 r^{2}+4 r-3$
2. If the factors of a polynomial are $\left(3 \mathrm{k}^{2}+1\right)(4 \mathrm{k}-3)$, what are the roots?
3. A) Name the solutions to the graph at the right:
B) Name the degree for the graph at the right:
C) Name the multiplicity of each zero:
4. Name the translation for the following function:

$$
f(x)=-2(x-3)^{3}-4
$$

5. Name the y intercept of the following function:

$$
f(x)=12 x^{4}-x^{3}+2 x+5
$$

Evaluate, simplify, and factor polynomial expressions

- Evaluate: plug in a number and simplify the expression $f(3)=2 r^{3}+5 r^{2}-r-3$
- Simplify: Do whatever operations you can. Do not make up your own rules. However you simplify you must follow the rules in math.

$$
f(x)=(x-3)(x+2)^{2}
$$

- Factor: This is the opposite of simplifying. You are finding what multiplies to get the original problem. Often this will be done by grouping for a polynomial.

$$
\text { 1. } f(r)=12 r^{3}-9 r^{2}+4 r-3
$$

Find minimum/maximum values, domain/range of functions.

Minimum: lowest point on a curve Maximum: highest point on a curve

These can be relative or absolute.
Relative - talking about a specific section of the graph
Absolute - talking about over the whole graph

Domain - x values of a graph (how far left to how far right)
Range - y values of a graph (how low to how high)

Zeroes, X - intercepts, Solutions, Roots

These all mean the same thing!
2. If the factors of a polynomial are $\left(3 k^{2}+1\right)(4 k-3)$, what are the roots?
Multiplicity occurs when you have repeat solutions (2 cause a bounce, 3 flattens and goes through) Degree: add up all of the x-intercepts including their multiplicity
3. A) Name the solutions to the graph at the right:
B) Name the degree for the graph at the right:
C) Name the multiplicity of each zero:

Translations for Quadratics and Cubics

$f(x)=a(x-h)^{2}+k \quad f(x)=a(x-h)^{3}+k$
Vertex: (h, k)
inflection point: (h, k)
Horizontal translation: opposite of h
Vertical translation: k
If a is negative it reflects over the x axis
If a is between 0 and 1 or 0 and -1 it is a stretch (makes it fat)
If a is greater than 1 or less than -1 it's a skew (makes it skinny)
4. Name the translation for the following function:

$$
f(x)=-2(x-3)^{3}-4
$$

Y-intercept, Degree, and Number of Turns

Y-intercept: where it crosses the y-axis on a graph or what the value is when $x=0$ in an equation.
5. Name the y intercept of the following function:

$$
f(x)=12 x^{4}-x^{3}+2 x+5
$$

Degree: When looking at the equation it's the highest exponent
Number of turns = degree - 1

Calculator Tricks

Put the function into the $y=$ part on your calculator

To find the Maximum/Minimum:
$2^{\text {nd }}$ Trace (calc)
Choose Maximum or Minimum
Move spider man to the left side of your max/min press ENTER
Move spider man to the right side of your max/min press ENTER ENTER

To find the x-intercepts: $2^{\text {nd }}$ Trace (calc) Choose zero
Move spider man to the left side of your x-int press ENTER
Move spider man to the right side of your x-int press ENTER ENTER

Practice Problems:

Simplify:

1. $\left(x^{3}+2 x-4\right)+\left(x^{2}-4 x+1\right)$
2. $\left(x^{3}+2 x-4\right)-\left(x^{2}-4 x+1\right)$
3. $(2 x-4)\left(x^{2}-4 x+1\right)$
4. $(x+2)^{2}$
5. Evaluate the previous problems at $\mathrm{x}=6$
6. Factor: $x^{2}-4 x-12$
7. Factor: $54 x^{2}+108 x+48$
8. Factor: $12 x^{3}-9 x^{2}-16 x+12$

...and these

9. Given the graph at the right:
a. Name the degree
b. Name all relative maximums
c. Name all relative minimums
d. Name the absolute maximum
e. Name the absolute minimum
f. Name the roots and their multiplicities

10. Given the equation:

$$
f(x)=-2(x-3)^{3}+2
$$

Describe the translation from the parent graph, make sure to include vertex/inflection point, reflections and stretch/skew.
11. What is the y-intercept of the equation above?
12. Use your calculator to find the max/min and zeroes of the following equation:

$$
f(x)=-2 x^{2}+3 x+2
$$

