Polynomials Review

Name \qquad

Warm Up: Make sure you TRY every problem

1. Factor: $12 r^{3}-9 r^{2}+4 r-3$
2. If the factors of a polynomial are $\left(3 k^{2}+1\right)(4 k-3)$, what are the roots?
3. A) Name the solutions to the graph at the right:
B) Name the degree for the graph at the right:
C) Name the multiplicity of each zero:

4. Name the translation for the following function:

$$
f(x)=-2(x-3)^{3}-4
$$

5. Name the y intercept of the following function:

$$
f(x)=12 x^{4}-x^{3}+2 x+5
$$

Guide Notes:

Evaluate, simplify, and factor polynomial expressions
Evaluate: \qquad in a \qquad and \qquad the expression

$$
f(3)=2 r^{3}+5 r^{2}-r-3
$$

Simplify: Do whatever \qquad you can. Do not \qquad your own rules. However you simplify you must follow the rules in math.

$$
f(x)=(x-3)(x+2)^{2}
$$

Factor: This is the opposite of simplifying. You are finding what multiplies to get the original problem. Often this will be done by grouping for a polynomial.
(\#1 from warm up)

Find minimum/maximum values, domain/range of functions.

Minimum: \qquad point on a curve

Maximum: \qquad point on a curve

These can be relative or absolute.
Relative - talking about a \qquad
\qquad of the graph

Absolute - talking about over the \qquad graph

Domain - \qquad values of a graph (\qquad
Range - \qquad values of a graph (\qquad

Zeroes, X - intercepts, Solutions, Roots - They all mean the same thing!!!
\#2 from warm up
Multiplicity occurs when you have \qquad solutions (2 cause a \qquad 3 \qquad and goes through the x axis)

Degree: add up all of the \qquad including their multiplicity
\#3 from warm up

Translations for Quadratics and Cubics

$f(x)=a(x-h)^{2}+k$ $f(x)=a(x-h)^{3}+k$

Vertex: \qquad inflection point: \qquad
Horizontal translation: \qquad Vertical translation: \qquad
If a is negative it \qquad over the x axis

If a is between 0 and 1 or 0 and -1 it is a \qquad (makes it \qquad
If a is greater than 1 or less than -1 it's a \qquad (makes it \qquad \#4 on warm up

Y-intercept, Degree, and Number of Turns

Y -intercept: where it crosses the \qquad on a graph or what the value is when $x=$ \qquad in an equation.
\#5 on warm up
Degree: When looking at the equation it's the \qquad exponent

Number of turns $=$ \qquad

Calculator Tricks - Put the function into the $\mathrm{y}=$ part on your calculator

```
To find the Maximum/Minimum:
2 nd Trace (calc)
Choose Maximum or Minimum
Move spider man to the left side of your max/min press ENTER
Move spider man to the right side of your max/min press ENTER ENTER
```

To find the x-intercepts:
$2^{\text {nd }}$ Trace (calc)
Choose zero
Move spider man to the left side of your x-int press ENTER
Move spider man to the right side of your x-int press ENTER ENTER

Practice Problems:

Simplify:

1. $\left(x^{3}+2 x-4\right)+\left(x^{2}-4 x+1\right)$
2. $\left(x^{3}+2 x-4\right)-\left(x^{2}-4 x+1\right)$
3. $(2 x-4)\left(x^{2}-4 x+1\right)$
4. $(x+2)^{2}$
5. Evaluate problems 1-4 at $x=6$
6. Factor: $x^{2}-4 x-12$
7. Factor: $54 x^{2}+108 x+48$
8. Factor: $12 \mathrm{x}^{3}-9 x^{2}-16 x+12$
9. Given the graph at the right:
a. Name the degree
b. Name all relative maximums
c. Name all relative minimums
d. Name the absolute maximum
e. Name the absolute minimum
f. Name the roots and their multiplicities

10. Given the equation: $\quad f(x)=-2(x-3)^{3}+2$

Describe the translation from the parent graph, make sure to include vertex/inflection point, reflections and stretch/skew.
11. What is the y-intercept of the equation above?
12. Use your calculator to find the max/min and zeroes of the following equation: $f(x)=-2 x^{2}+3 x+2$

