1. Simplify $\sqrt{20}$
2. Solve $3^{x}=27$
3. Find the amplitude of $y=\sin x$
4. Solve $\frac{x}{5}=\frac{8}{x}$

Guide Notes:

Radical Rules you must know

A $\sqrt[n]{x^{m}}=$
B $\sqrt[n]{a b}=$ \qquad
C $\sqrt[n]{\frac{a}{b}}=$ \qquad
D $\sqrt[2]{x^{2}}=$ \qquad

Examples:
Simplify

1. $\sqrt[3]{343}$
2. $\sqrt{7} * \sqrt{28}$
3. $\sqrt{4 a^{2} b^{4} c^{3}}$
4. Solve: $\sqrt[6]{2^{7}}=2^{x}$

Evaluate
5. $f(2)=\sqrt{x+18}$

Solve:
6. $\sqrt{7 x+3}-8=4$
(You should be able to do \#1 from warm up)

Exponentials and Logs

Know that \qquad functions and \qquad functions are inverses of each other

	Exponential	Logarithmic (log)		
Parent Function		$y=a * b^{x-h}+k$		
Stretch				
Shrink/Skew				
Reflection over xaxis				
Horizontal Shift				
Vertical Shift				

Example

The graph at the right shows $y=4^{x}$.
Sketch the graph of $y=4^{x+2}$ on the same set of axes.

Remember how I told you that exponentials and logs are \qquad ?

If exponential is \qquad
Then logarithmic is \qquad You will often see these written: \qquad
It just means: \qquad Where b is the base and y is the exponent.
Examples:
What is the logarithmic form of the equation $6^{2}=36$
$\log _{b} x=y$
b is the base:
y is the exponent:
x is what its equal to:

The graph at the right shows the function $y=\log _{2} x$.
What is the translation from the parent function of
$y=\log _{2}(x-3)+4 ?$

You should be able to do \#2 on the warm up

Periodic Functions

Periodic functions repeats its \qquad at regular \qquad .

	Period	Amplitude
From a Graph		
From an equation		

You should be able to do \#3 on the warm up
Solving Rational Equations: $f(x)=\frac{p(x)}{q(x)}$
Example : Solve $\quad \frac{5}{x+4}=\frac{1}{x-4}$

$$
\frac{8}{x}+\frac{1}{3}=\frac{5}{x}
$$

Calculator Tricks - Put the function into the $y=$ part on your calculator
What are the solutions of the rational equation $\frac{x+2}{1-2 x}=5$
Go to $y=$ screen
Type in left side in y 1 and right side of equation in y 2
Graph
$2^{\text {nd }}$ trace choose intersection

Press enter 3 times

Practice Problems:

Practice: Solve each. Check for extraneous solutions

1. $\frac{x}{4}=\frac{x+1}{3}$
2. $\frac{3 x}{5}+\frac{4}{x}=\frac{4 x+1}{5}$
3. $\frac{3 x}{x-2}=4+\frac{x}{5}$

Rewrite the following in log form.
4. $100=10^{2}$
5. $9^{3}=729$
6. $\left(\frac{1}{2}\right)^{4}=\frac{1}{16}$
6. Draw a line from each logarithm equation in Column A to its exponential equation in Column B.

Column A

$$
\begin{array}{ll}
\text { Column A } & \text { Column B } \\
\log _{2} 16=4 & 10^{3}=1000 \\
\log _{3} 9=2 & b^{y}=x \\
\log _{10} 1000-3 & 3^{2}=9 \\
\log _{b} x=y & 2^{4}=16
\end{array}
$$

Determine the period and amplitude of each graph.
8.

9.

10.

Determine the number of cycles each sine function has in the interval from 0 to 2π. Find the amplitude and period of each function.
11.

12. $y=\sin 2 \theta$

Simplify:
13. $\sqrt{36 x^{4}}$
14. $\sqrt{5 a^{3}} * \sqrt{20 a}$
15. Scientists use the Beaufort wind scale to approximate wind speed. The formula is $B=$ $1.69 \sqrt{s+4.45}-3.49$, where B is the Beaufort number and s is the wind speed in miles per hour. To the nearest mile per hour, what is the approximate wind speed if the Beaufort number is 6 ?
A. 2
B. 12
C. 27
D. 253
16. Where do the minimum values of $y=\sin x$ occur on $[-2 \pi, 2 \pi]$?
A. $\frac{-\pi}{2}$ and $\frac{3 \pi}{2}$
B. $\frac{-3 \pi}{2}$ and $\frac{\pi}{2}$
C. $-\pi$ and π
D. -2π and 2π
17. Given $x>0, y>0$, which expression is equivalent to $\frac{3 \sqrt[3]{27 x^{5}} \sqrt[4]{32 y^{4}}}{\sqrt{8 x^{8} y^{6}}}$
A. $\frac{3 \sqrt[3]{x^{2}} \sqrt[4]{4}}{2 x^{3} y^{2}}$
B. $\frac{3 \sqrt{2} \sqrt[3]{x^{2}} \sqrt[4]{2}}{2 x^{3} y^{2}}$
C. $\frac{3 \sqrt[3]{x^{2}} \sqrt[4]{2}}{\sqrt{2} x^{3} y^{2}}$
D. $\frac{18 \sqrt[3]{x^{2}}}{x^{3} y^{2}}$
18. Which best describes the range of the relation $y=f(x)$?
A. $-1 \leq x \leq 2$
B. $-\frac{1}{2} \leq x \leq \frac{1}{2}$
C. $-1 \leq y \leq 2$
D. $-\frac{1}{2} \leq y \leq \frac{1}{2}$
19. The illustration shows part of the graph of $y=\frac{3}{2} \sin \left(\frac{4 x}{5}\right)+\frac{1}{2}$ in the $x y$-plane. What is the period of the function?

A. 8
B. $\frac{5}{4} \pi+\frac{1}{2}$
C. $\frac{5}{2} \pi$
D. 3π
20. If $\log _{2} x=-3$, what is x ?
A. $\frac{1}{9}$

B. $\frac{1}{8}$
C. 8
D. 9

