Non-Polynomial Review

Name

Warm Up: Make sure you TRY every problem

1. Simplify
$$\sqrt{20}$$

2. Solve
$$3^x = 27$$

1. Simplify
$$\sqrt{20}$$
 2. Solve $3^x = 27$ 3. Find the amplitude of $y = \sin x$ 4. Solve $\frac{x}{5} = \frac{8}{x}$

4. Solve
$$\frac{x}{5} = \frac{8}{x}$$

Guide Notes:

Radical Rules you must know

$$\mathsf{B} \quad \sqrt[n]{ab} = \underline{\hspace{1cm}}$$

$$C \quad \sqrt[n]{\frac{a}{b}} = \underline{\qquad}$$

D
$$\sqrt[2]{x^2} =$$

Examples:

Simplify

1.
$$\sqrt[3]{343}$$

2.
$$\sqrt{7} * \sqrt{28}$$

3.
$$\sqrt{4a^2b^4c^3}$$

2.
$$\sqrt{7} * \sqrt{28}$$
 3. $\sqrt{4a^2b^4c^3}$ 4. $Solve: \sqrt[6]{2^7} = 2^x$

Evaluate

5.
$$f(2) = \sqrt{x + 18}$$

Solve:

6.
$$\sqrt{7x+3}-8=4$$

(You should be able to do #1 from warm up)

Exponentials and Logs

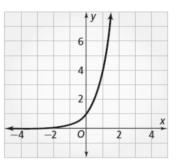
Know that functions and functions are inverses of each other

	Exponential	Logarithmic (log)	
Parent Function	$y = a * b^{x-h} + k$	$y = alog_b(x - h) + k$	
Stretch		I	
Shrink/Skew			
Reflection over x axis			
Horizontal Shift			
Vertical Shift			

Example

The graph at the right shows $y = 4^x$.

Sketch the graph of $y = 4^{x+2}$ on the same set of axes.



Remember how I told you that exponentials and logs are

If exponential is

Then logarithmic is ______

You will often see these written: _____

It just means:

Where b is the base and y is the exponent.

Examples:

What is the logarithmic form of the equation $6^2 = 36$

$$log_b x = y$$

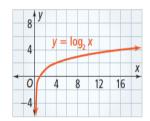
b is the base:

y is the exponent: x is what its equal to:

The graph at the right shows the function $y = log_2 x$.

What is the translation from the parent function of

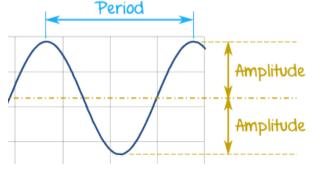
$$y = log_2(x - 3) + 4$$
?



You should be able to do #2 on the warm up

Periodic Functions

Periodic functions repeats its ______ at regular ____



	Period	Amplitude
From a Graph		
From an equation		

You should be able to do #3 on the warm up

Solving Rational Equations: $f(x) = \frac{p(x)}{g(x)}$

Example : Solve

$$\frac{5}{r+4} = \frac{1}{r-4}$$

You should be able to do #4 on the warm up

Example : Solve
$$\frac{8}{x} + \frac{1}{3} = \frac{5}{x}$$

Calculator Tricks - Put the function into the y = part on your calculator

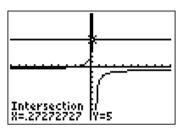
What are the solutions of the rational equation $\frac{x+2}{1-2x} = 5$

Go to y= screen

Type in left side in y1 and right side of equation in y2 Graph

2 trace choose intersection

Press enter 3 times



Practice Problems:

Practice: Solve each. Check for extraneous solutions

1.
$$\frac{x}{4} = \frac{x+1}{3}$$

2.
$$\frac{3x}{5} + \frac{4}{x} = \frac{4x+1}{5}$$

3.
$$\frac{3x}{x-2} = 4 + \frac{x}{5}$$

Rewrite the following in log form.

$$4.100 = 10^{2}$$

$$5.9^3 = 729$$

$$6. \left(\frac{1}{2}\right)^4 = \frac{1}{16}$$

$\textbf{6. Draw a line from each } \textit{logarithm} \ \textbf{equation in Column A to its exponential equation}$ in Column B.

Column A

Column B

$$\log_2 16 = 4$$

$$10^3 = 1000$$

$$log_3 9 = 2$$

$$b^y = x$$

$$\log_{10} 1000 - 3$$

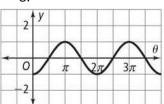
$$3^2 = 9$$

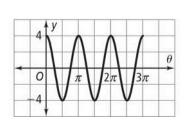
$$\log_b x = y$$

$$2^4 = 16$$

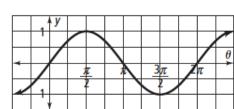
Determine the period and amplitude of each graph.

8.



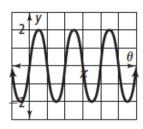


10.



Determine the number of cycles each sine function has in the interval from 0 to 2π . Find the amplitude and period of each function.

11.



12. $y = \sin 2\theta$

Simplify:

13.
$$\sqrt{36x^4}$$

14.
$$\sqrt{5a^3} * \sqrt{20a}$$

15. Scientists use the Beaufort wind scale to approximate wind speed. The formula is $B = \frac{1}{2}$ $1.69\sqrt{s+4.45}-3.49$, where B is the Beaufort number and s is the wind speed in miles per hour. To the nearest mile per hour, what is the approximate wind speed if the Beaufort number is 6?

A. 2 B. 12 C. 27 D. 253

16. Where do the minimum values of y = sinx occur on $[-2\pi, 2\pi]$?

A.
$$\frac{-\pi}{2}$$
 and $\frac{3\pi}{2}$ B. $\frac{-3\pi}{2}$ and $\frac{\pi}{2}$ C. $-\pi$ and π D. -2π and 2π

B.
$$\frac{-3\pi}{2}$$
 and $\frac{\pi}{2}$

C.
$$-\pi$$
 and π

D.
$$-2\pi$$
 and 2π

17. Given x>0, y>0, which expression is equivalent to $\frac{3\sqrt[3]{27x^5} \sqrt[4]{32y^4}}{\sqrt{8x^8y^6}}$

A.
$$\frac{3\sqrt[3]{x^2}\sqrt[4]{2}}{2x^3y^2}$$

A.
$$\frac{3\sqrt[3]{x^2}\sqrt[4]{4}}{2x^3y^2}$$
 B. $\frac{3\sqrt{2}\sqrt[3]{x^2}\sqrt[4]{2}}{2x^3y^2}$ C. $\frac{3\sqrt[3]{x^2}\sqrt[4]{2}}{\sqrt{2}x^3y^2}$ D. $\frac{18\sqrt[3]{x^2}}{x^3y^2}$

c.
$$\frac{3\sqrt[3]{x^2}\sqrt[4]{2}}{\sqrt{2}x^3y^2}$$

D.
$$\frac{18\sqrt[3]{x^2}}{x^3y^2}$$

18. Which best describes the range of the relation y = f(x)? 18. Which best describes the range of the relation $y = \frac{1}{2}$.

A. $-1 \le x \le 2$ B. $-\frac{1}{2} \le x \le \frac{1}{2}$ C. $-1 \le y \le 2$ D. $-\frac{1}{2} \le y \le \frac{1}{2}$

A.
$$-1 \le x \le 2$$

$$B. -\frac{1}{2} \le x \le \frac{1}{2}$$

C.
$$-1 \le y \le 2$$

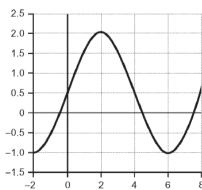
A. $\frac{1}{9}$

C. 8 **D.** 9

20. If $\log_2 x = -3$, what is x ?

D.
$$-\frac{1}{2} \le y \le \frac{1}{2}$$

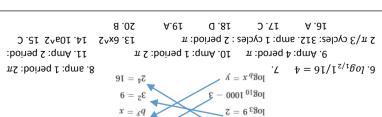
19. The illustration shows part of the graph of $y = \frac{3}{2} \sin\left(\frac{4x}{5}\right) + \frac{1}{2}$ in the xy-plane. What is the period of the function?



B.
$$\frac{5}{4}\pi + \frac{1}{2}$$

C.
$$\frac{5}{2}\pi$$

D. 3π



$$\Delta = 0.01_{01}$$
 $0.01.4$

