Non-polynomial Functions

EVALUATE RADICAL EXPRESSIONS

SOLVE RADICAL EQUATIONS
CONVERT BETWEEN LOG AND EXPONENTIAL; GRAPH EACH
SOLVE RATIONAL EQUATIONS
GRAPH AND DETERMINE DOMAIN, RANGE, AMPLITUDE, AND PERIOD OF PERIODIC FUNCTIONS

Radical Rules you must know

A $\sqrt[n]{x^{m}}=x^{\frac{m}{n}}$
B $\sqrt[n]{a b}=\sqrt[n]{a} * \sqrt[n]{b}$
C $\sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}}$
D $\sqrt[2]{x^{2}}=x$

Examples

1. $\sqrt[3]{343}$ (uses rule D) \quad 2. $\sqrt{7} * \sqrt{28}$ (Uses rule B \& A)
$=\sqrt[3]{7^{3}}$
$=7$
$=\sqrt{196}$
$=14$
2. $\sqrt{4 a^{2} b^{4} c^{3}}$ (uses rule D)
$=\sqrt{2^{2} a^{2} b^{2} b^{2} c^{2} c}$
$=2 \mathrm{ab}^{2} \mathrm{c} \sqrt{c}$

Evaluate

4. Solve: $\sqrt[6]{2^{7}}=2^{x}$

$$
x=\frac{7}{6}
$$

(uses rule A)

$$
\text { 5. } \begin{aligned}
f(2) & =\sqrt{x}+18 \\
= & \sqrt{2+18} \\
= & \sqrt{20} \\
= & 2 \sqrt{5}
\end{aligned}
$$

Solve
6. $\sqrt{7 x+3}-8=4$

1. Isolate sq rt
2. Square both sides
$7 \mathrm{x}+3=144$
3.Solve
$7 x=141$
3. Check for
$x=20.1$
extraneous solutions

You should be able to answer \# 1 warm up

Exponential and Logs

Know that exponential functions and logarithmic functions are inverses of each other

	Exponenticl	Logarithmic (log)
Parent Function	$y=a * b^{x-h}+k \quad y=\log _{b}(x-h)+k$	
Stretch	$\|a\|>1$	
Shrink/Skew	$0<\|a\|<1$	
Reflection over x axis	$a<0$	
Horizontal Shift	Opposite of h	
Vertical Shift	K	

What transformation?

The graph at the right shows $y=4^{x}$. Sketch the graph of
$y=4^{(x+2)}$ on the same set of axes.
Left 2

Logarithmic Functions (Logs)

Remember how I told you that exponentials and logs are inverses?
If exponential is $b^{x}=y$
Then logarithmic is $b^{y}=x$
You will often see these written:

$$
\log _{b} x=y
$$

It just means

$$
b^{y}=x
$$

Where b is the base and y is the exponent.
A logarithm equals the exponent

Example:

What is the logarithmic form of the equation $6^{2}=36$

$$
\log _{b} x=y
$$

b is the base: $6 \quad y$ is the exponent: 2 x is what its equal to: 36

$$
\log _{6} 36=2
$$

Example

The graph at the right shows the function $y=\log _{2} x$. What is the translation from the parent function of
$y=\log _{2}(x-3)+4$?
Right 3 up 4

Periodic Functions

Periodic functions repeats its y-values at regular intervals.

	Period	Amplitude	
From a Graph	Distance from 1 crest to the next	$1 / 2$ the distance between the max and min	
From an equation	$\left.\frac{2 \pi}{\mid \# n e x t ~ t o ~} x \right\rvert\,$	\|\#out front	

Solving Rational Equations

- Rational equation: $f(x)=\frac{p(x)}{q(x)}$
- Example 1 Solve

$$
\begin{aligned}
& \frac{5}{x+4}=\frac{1}{x-4} \\
& X+4=5(x-4) \\
& x+4=5 x-20
\end{aligned}
$$

Cross multiply

Solve
$24=4 \mathrm{x}$
Check for extraneous solutions
$6=x$

Example 2

1. Get common denominator
2. Cross multiply
3. Solve
4. Check for extraneous solutions

$$
\frac{8}{x}+\frac{1}{3}=\frac{5}{x}
$$

$$
\frac{24+x}{3 x}=\frac{5}{x}
$$

$$
15 x=x^{2}+24
$$

$$
x^{2}-15 x+24=0
$$

Use Quadratic formula/factor/use calculator to solve

$$
x=14.5 x=1 / 2
$$

Example

$$
\begin{gathered}
\frac{8}{x}+\frac{1}{3}=\frac{5}{x} \\
\left(\frac{3}{3}\right) \frac{8}{x}+\left(\frac{x}{x}\right) \frac{1}{3}=\left(\frac{3}{3}\right) \frac{5}{x} \\
\frac{24}{3 x}+\frac{x}{3 x}=\frac{15}{3 x} \\
\frac{24+x}{3 x}=\frac{15}{3 x} \\
24+x=15 \\
x=-9
\end{gathered}
$$

Tricks of the trade...use your calculator!!!!

What are the solutions of the rational equation $\frac{x+2}{1-2 x}=5$
Go to $y=$ screen
Type in left side in yl and right side of equation in y2
Graph
$2^{\text {nd }}$ trace choose intersection
Press enter 3 times

