Non-polynomial Functions

EVALUATE RADICAL EXPRESSIONS

SOLVE RADICAL EQUATIONS

CONVERT BETWEEN LOG AND EXPONENTIAL; GRAPH EACH

SOLVE RATIONAL EQUATIONS

GRAPH AND DETERMINE DOMAIN, RANGE, AMPLITUDE, AND PERIOD OF PERIODIC FUNCTIONS

Radical Rules you must know

A
$$\sqrt[n]{x^m} = x^{\frac{m}{n}}$$

B $\sqrt[n]{ab} = \sqrt[n]{a} * \sqrt[n]{b}$
C $\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$
D $\sqrt[2]{x^2} = x$

Examples

1. $\sqrt[3]{343}$ (uses rule D) 2. $\sqrt{7} * \sqrt{28}$ (Uses rule B & A) 3. $\sqrt{4a^2b^4c^3}$ (uses rule D) $=\sqrt{2^2a^2b^2b^2c^2c}$ $=\sqrt[3]{7^3}$ $=\sqrt{196}$ $=2ab^2c\sqrt{c}$ = 7 =14

4. Solve: $\sqrt[6]{2^7} = 2^x$	
$X = \frac{7}{6}$	
(uses rule A)	

Evaluate $=\sqrt{2+18}$ $=\sqrt{20}$ $=2\sqrt{5}$

6. $\sqrt{7x+3} - 8 = 4$ Solve $\sqrt{7x+3}^2 = 12^2$ 5. $f(2) = \sqrt{x + 18}$ 1. Isolate sq rt 2. Square both sides 7x+3=144 3.Solve 7x=141 4. Check for x=20.1 extraneous solutions

You should be able to answer #1 warm up

Exponential and Logs

Know that exponential functions and logarithmic functions are inverses of each other

	Exponential	Logarithmic (log)
Parent Function	$y = a * b^{x-h} + k$	$y = alog_b(x - h) + k$
Stretch	a > 1	
Shrink/Skew	0 < a < 1	
Reflection over x axis	a <	< 0
Horizontal Shift	Opposite of h	
Vertical Shift	k	

What transformation?

The graph at the right shows $y = 4^x$. Sketch the graph of $y = 4^{(x+2)}$ on the same set of axes.

Left 2

Logarithmic Functions (Logs)

Remember how I told you that exponentials and logs are inverses? If exponential is $b^x = y$ Then logarithmic is $b^y = x$

You will often see these written: $log_b x = y$

It just means

$$b^{y} = x$$

Where b is the base and y is the exponent. A logarithm **equals** the exponent

What is the logarithmic form of the equation $6^2 = 36$

 $log_b x = y$

b is the base: 6 y is the exponent: 2 x is what its equal to: 36

 $log_{6}36 = 2$

Example

The graph at the right shows the function $y = log_2 x$. What is the translation from the parent function of $y = log_2(x - 3) + 4$?

Right 3 up 4

Periodic Functions

Periodic functions repeats its y-values at regular intervals.

	Period	Amplitude
From a Graph	Distance from 1 crest to the next	1 ¹ / ₂ the distance between the max and min
From an equation	$\frac{2\pi}{ \#next\ to\ x }$	#out front

Solving Rational Equations

Rational equation:
$$f(x) = \frac{p(x)}{q(x)}$$

Example 1 Solve

Cross multiply

$$\frac{5}{x+4} = \frac{1}{x-4}$$

$$X+4=5(x-4)$$

$$x+4=5x-20$$
Solve

$$24=4x$$
Check for extraneous solutions

$$6=x$$

Example 2

1.	Get common denominator	$\frac{8}{x} + \frac{1}{3} = \frac{5}{x}$
2.	Cross multiply	
3.	Solve	24 + x = 5
4.	Check for extraneous solutions	$\frac{3x}{3x} = \frac{1}{x}$
		$15x = x^2 + 24$
		$x^2 - 15x + 24 = 0$

Use Quadratic formula/factor/use calculator to solve

x= 14.5 x= 1/2

Example

$$\frac{\frac{8}{x} + \frac{1}{3} = \frac{5}{x}}{\frac{3}{3} + \frac{x}{x} + \frac{x}{x}} = \frac{1}{3} = \frac{3}{3} + \frac{5}{x}}{\frac{24}{3x} + \frac{x}{3x}} = \frac{15}{3x}}{\frac{24}{3x} + \frac{x}{3x}} = \frac{15}{3x}}{\frac{24}{3x} + x} = \frac{15}{3x}}{\frac{24}{3x} + x} = \frac{15}{3x}}{x = -9}$$

Tricks of the trade...use your calculator!!!!

What are the solutions of the rational equation $\frac{x+2}{1-2x} = 5$

Go to y= screen Type in left side in y1 and right side of equation in y2 Graph 2nd trace choose intersection Press enter 3 times

