Lesson 10-6: Exponential Growth and Decay Applications

Exponential Decay of the Form $y=a(1-r)^{t}$

A cup of coffee contains 130 milligrams of caffeine. If caffeine is eliminated from the body at a rate of 11% per hour, how long will it take for half of this caffeine to be eliminated from a person's body?

Exponential Decay of the Form $\mathrm{y}=\mathrm{ae} \mathrm{e}^{-\mathrm{kt}}$

The half-life of a radioactive substance is the time it takes for half of the atoms of the substance to become disintegrated. All life on Earth contains the radioactive element Carbon-14, which decays continuously at a fixed rate. The half-life of Carbon-14 is 5760 years. That is, every 5760 years half of a mass of Carbon-14 decays away.
a. What is the value of k for Carbon-14?
b. A paleontologist examining the bones of a woolly mammoth estimates that they contain only 3% as much Carbon-14 as they would have contained when the animal was alive. How long ago did the mammoth die?

Exponential Growth of the Form $y=a(1+r)^{t}$

In 1910, the population of a city was 120,000 . Since then, the population has increased by exactly 1.5% per year. If the population continues to grow at this rate, what will the population be in 2010?

Exponential growth of the Form $\mathbf{y}=\mathbf{a e}^{\mathrm{kt}}$

As of 2000, China was the world's most populous country with an estimated population of 1.26 billion people. The population of China can be modeled by $C(t)=1.26 \mathrm{e}^{0.009 t}$. According to this model, what is China's population in 2017?

Name
Algebra 2 - Examples of Exponential Functions - Applications

1. Exponential Decay $\left(\mathbf{y}=\mathbf{a}(\mathbf{1}-\mathbf{r})^{t}\right)$ Victoria bought a computer for $\$ 2500$. It is expected to depreciate at a rate of 17\% per year.
a. What will be the value of the computer in 2 years?
b. When will the computer be worth $\$ 1000$?
2. Exponential Decay $\left(\mathbf{y}=\mathbf{a e}^{-\mathrm{kt}}\right)$ Radioactive iodine is used to determine the health of the thyroid gland. The value of k for the formula is 0.0856 .
a. If there is 50 grams of iodine, how much will there be in one week (7 days)?
b. What is the half-life of this substance?
3. Exponential Growth $\left(\mathbf{y}=\mathbf{a}(\mathbf{1}+\mathbf{r})^{t}\right)$ The Martins bought a condominium for $\$ 85,000$. Assume that the value will appreciate 5\% per year.
a. How much will the condo be worth in 10 years?
b. When will the condo be worth $\$ 150,000$?
4. Exponential Growth $\left(y=a e^{k t}\right)$ In 2000, the bird population in a certain area is 10,000 . The number of birds increases continuously at a rate of 9%.
a. Predict the population in 2020.
b. When will the population double?
