Unit 2: Lesson 7

Graphing Linear Inequalities in Two Variables (6.5)

Essential Question:

➤ How can you represent inequalities graphically?

Goal: I can graph a linear inequality on the coordinate plane.

Steps:

- 1) Put into slope-intercept form
- 2) Plot the BOUNDARY line (y = mx + b)
 - \diamond Dotted Line \rightarrow > or <
 - ❖ Solid Line → $\geq or \leq$
- 3) Shade the Solution Set
 - Test Point: use (0, 0)
 - Shade the appropriate region, where the inequality is true
 - ❖ Short-Cut
 - \geq , > Shade Up
 - \leq , < Shade Down

Section 1: Checking Solutions of Inequalities.

1) Check whether the ordered pairs are solutions of: x - 4y < 1

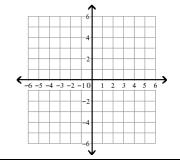
b.)

a.) (5, 1)

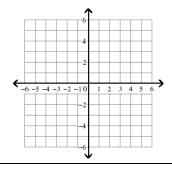
b.) (0, 0)

YT 1) Check whether the ordered pairs are solutions of: $4x + 5y \le 12$

- a.) (-3, 5)
- b.) (6, -8)

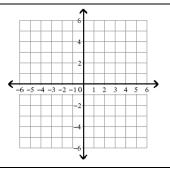

Answer: a.)

Answer: a.)

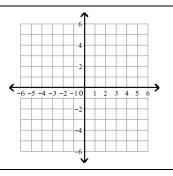

b.)

<u>Section 2</u>: HOY... Graphing Linear Inequalities that are Horizontal.

2) Graph: v > -3



YT 2) Graph: $v \le 1$



Section 3: VUX... Graphing Linear Inequalities that are Vertical.

3) Graph: $x \ge -5$

YT 3) Graph: x < 2

Section 4: Graphing Linear Inequalities in Two Variables.

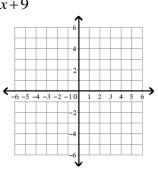
4) Graph: y < x - 8

m =

b =

dotted/solid

shade up/dwn

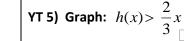

YT 4) Graph: $y \le -x + 9$

m =

h =

dotted/solid

shade up/dwn

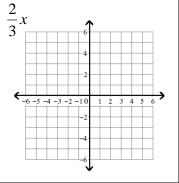

5) **Graph:** $g(x) \ge \frac{1}{2}x$

m =

b =

dotted/solid

shade up/dwn

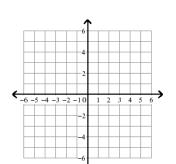


m =

b =

dotted/solid

shade up/dwn

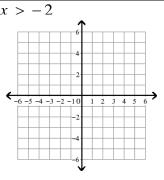

6) Graph: $\frac{1}{2}x - 2y \le 2$

m =

b =

dotted/solid

shade up/dwn


YT 6) Graph: -y + x > -2

m =

b =

dotted/solid

shade up/dwn

Homework: Graphing Inequalities Multiple Choice Worksheet... Standardized Test Prep

Ticket Out / Lesson Summary:

Complete the writing prompt... "To graph the inequality y > 2x - 3..."